Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34.387
1.
Cell Rep ; 43(4): 114035, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38573859

Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.


Bombyx , Animals , Ligands , Bombyx/metabolism , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Binding Sites , Amino Acid Sequence , Models, Molecular , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/chemistry , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry
2.
Physiol Behav ; 279: 114543, 2024 May 15.
Article En | MEDLINE | ID: mdl-38565330

BACKGROUND: Insufficient sleep adversely affects energy homeostasis by decreasing leptin levels. The underlying physiological mechanisms; however, remain unclear. Circulating leptin is well described to be regulated by its soluble receptor (sOB-R). Intriguingly, the impact of short sleep duration on sOB-R levels has never been characterized. AIM: In this study, we investigated, for the first time, the variation of sOB-R levels and its temporal relationship with circulating leptin upon acute sleep restriction. METHODS: Five adult females were maintained on an 8-hour sleep schedule (bedtime at 00:00) for 1 week before restricting their sleep to 4.5 h (bedtime at 03:30) on 2 consecutive nights. Balanced meals were scheduled to specific hours and sleep was objectively measured. Four-hour blood samples were regularly collected during waking hours between 08:00 and 00:00. RESULTS: Sleep restriction resulted in lower leptin (20.9 ± 1.7 vs 25.7 ± 1.7 ng/ml) and higher sOB-R concentrations (24.4 ± 1.2 vs 19.8 ± 1.6 ng/ml). Neither the discordant temporal relationship nor the pattern of leptin and sOB-R were altered in response to sleep restriction. CONCLUSION: Our results suggest that sleep restriction may modulate circulating leptin levels and possibly metabolism via upregulating its soluble receptor. This observation may have valuable therapeutic implications when considering sOB-R as a potential target during the management of metabolic disturbances.


Leptin , Receptors, Leptin , Humans , Female , Pilot Projects , Receptors, Cell Surface/metabolism , Carrier Proteins , Sleep
3.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38569016

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Alzheimer Disease , Microglia , Humans , Mice , Animals , Microglia/metabolism , Antibodies/metabolism , Receptors, Cell Surface/metabolism , Amyloid/metabolism , Disease Models, Animal , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoproteins E , Leukocytes/metabolism , Mice, Transgenic , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
4.
Cells ; 13(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38607073

Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.


Glioblastoma , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Up-Regulation/genetics , Glioblastoma/genetics , Tumor Microenvironment , Receptors, Cell Surface/metabolism , Prorenin Receptor
5.
Sci Rep ; 14(1): 9321, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653789

ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.


Alopecia , Anodontia , Cellular Senescence , Fibroblasts , Growth Disorders , Microfilament Proteins , Humans , Fibroblasts/metabolism , Cellular Senescence/genetics , Alopecia/metabolism , Alopecia/pathology , Alopecia/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/deficiency , Optic Atrophies, Hereditary/genetics , Optic Atrophies, Hereditary/metabolism , Actins/metabolism , Progeria/genetics , Progeria/pathology , Progeria/metabolism
6.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38474126

CD177 is a glycosyl phosphatidyl inositol (GPI)-linked, neutrophil-specific glycoprotein that in 3-5% of normal individuals is absent from all neutrophils. The molecular mechanism behind the absence of CD177 has not been unravelled completely. Here, we analyse the impact of the recently described CD177 c.1291G>A variant on CD177 expression. Recombinant CD177 c.1291G>A was expressed in HEK293F cells and its expression on the cell surface, inside the cell, and in the culture supernatant was investigated. The CD177 c.1291G>A protein was characterised serologically and its interaction with proteinase 3 (PR3) was demonstrated by confocal laser scanning microscopy. Our experiments show that CD177 c.1291G>A does not interfere with CD177 protein biosynthesis but affects the membrane expression of CD177, leading to very low copy numbers of the protein on the cellular surface. The mutation does not interfere with the ability of the protein to bind PR3 or human polyclonal antibodies against wild-type CD177. Carriers of the c.1291G>A allele are supposed to be phenotyped as CD177-negative, but the protein is present in soluble form. The presence of CD177 c.1291A leads to the production of an unstable CD177 protein and an apparent "CD177-null" phenotype.


Isoantigens , Receptors, Cell Surface , Humans , Receptors, Cell Surface/metabolism , GPI-Linked Proteins/metabolism , Alleles , Cell Membrane/metabolism , Myeloblastin/genetics , Phenotype , Isoantigens/genetics , Neutrophils/metabolism
7.
J Integr Neurosci ; 23(3): 47, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38538215

BACKGROUND: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management. METHODS: The rat BCP model was established by intratibial implantation of Walker 256 cells. Von Frey filaments measured the mechanical pain threshold. Movement-induced pain was assessed using limb use scores. Expressions of associated molecules in the affected tibias or dorsal root ganglia (DRG) were measured by immunofluorescence, immunohistochemistry, real-time quantitative polymerase chain reaction, or western blotting. Transduction of deleted in colorectal cancer (DCC) signaling was inhibited by intrathecal injection of DCC-siRNA. RESULTS: In BCP rats, the presence of calcitonin gene-related peptide (CGRP)-positive nerve fibers increased in the metastatic bone lesions. The metastatic site showed enrichment of well-differentiated osteoclasts and expressions of netrin-1 and its attractive receptor DCC. Upregulation of DCC and increased phosphorylation levels of focal adhesion kinase (FAK) and Rac family small GTPase 1/Cell division cycle 42 (Rac1/Cdc42) were found in the DRG. Intrathecal administration of DCC-siRNA led to a significant reduction in FAK and Rac1/Cdc42 phosphorylation levels in the DRG, decreased nociceptive nerve innervation, and improved pain behaviors. CONCLUSIONS: Netrin-1 may contribute to the activation of the BCP by inducing nociceptive nerve innervation and improving pain behaviors.


Bone Neoplasms , Cancer Pain , Netrin-1 , Animals , Rats , Bone Neoplasms/complications , Cancer Pain/etiology , DCC Receptor/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Netrin-1/genetics , Nociceptors/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , RNA, Small Interfering , Signal Transduction , Tumor Microenvironment , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
Biomolecules ; 14(3)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38540680

Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.


Receptor Protein-Tyrosine Kinases , Signal Transduction , GRB2 Adaptor Protein/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Tyrosine/metabolism , Receptors, Cell Surface/metabolism , Son of Sevenless Proteins , Protein Binding , Phosphorylation
9.
J Alzheimers Dis ; 98(2): 601-618, 2024.
Article En | MEDLINE | ID: mdl-38427484

Background: Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPß1, a surface receptor that triggers amyloid-ß(Aß) phagocytosis via TYROBP. Objective: To analyze the impact of this copy-number variant in SIRPß1 expression and how it affects AD molecular etiology. Methods: Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPß1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results: The insertion alters the SIRPß1 protein isoform landscape compromising its ability to bind oligomeric Aß and its affinity for TYROBP. SIRPß1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aß ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPß1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions: The SIRPß1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aß. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPß1 structural variant might be considered as a potential modulator of this causative pathway.


Alzheimer Disease , Cognitive Dysfunction , Receptors, Cell Surface , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Microglia/metabolism , Phagocytosis , Receptors, Cell Surface/metabolism
10.
Circ Res ; 134(7): 931-949, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38547250

The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.


Extracellular Matrix Proteins , Extracellular Matrix , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Collagen/metabolism , Elastin/metabolism , Homeostasis , Receptors, Cell Surface/metabolism
11.
Cell Rep ; 43(3): 113881, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38442019

An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.


Plasminogen , Receptors, Cell Surface , Mice , Animals , Humans , Plasminogen/metabolism , Receptors, Cell Surface/metabolism , Caloric Restriction , Liver/metabolism , Mice, Transgenic , Serine Proteases , Cell Proliferation , Muscles/metabolism
12.
PLoS One ; 19(3): e0300282, 2024.
Article En | MEDLINE | ID: mdl-38483883

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Dynorphins , 60598 , Spinal Cord Dorsal Horn , Mice , Animals , Spinal Cord/metabolism , Mice, Transgenic , Interneurons/metabolism , Posterior Horn Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Guanylate Cyclase/metabolism , Receptors, Cell Surface/metabolism
13.
Methods Enzymol ; 694: 303-320, 2024.
Article En | MEDLINE | ID: mdl-38492956

Spatiotemporal interrogation of signal transduction at the single-cell level is necessary to understand how extracellular cues are converted into biochemical signals and differentially regulate cellular responses. Using single-cell perturbation tools such as optogenetics, specific biochemical cues can be delivered to selective molecules or cells at any desired location and time. By measuring cellular responses to provided perturbations, investigators have decoded and deconstructed the working mechanisms of a variety of neuroelectric and biochemical signaling processes. However, analogous methods for deciphering the working mechanisms of mechanosensitive signaling by regulating mechanical inputs to cell receptors have remained elusive. To address this unmet need, we have recently developed a nanotechnology-based single-cell and single-molecule perturbation tool, termed mechanogenetics, that enables precise spatial and mechanical control over genetically encoded cell-surface receptors in live cells. This tool combines a magnetofluorescent nanoparticle (MFN) actuator, which provides precise spatial and mechanical signals to receptors via target-specific one-to-one interaction, with a micromagnetic tweezers that remotely controls the force exerted on a single nanoparticle. This chapter provides comprehensive experimental protocols of mechanogenetics consisting of four stages: (i) chemical synthesis of MFNs, (ii) bio-conjugation and purification of monovalent MFNs, (iii) establishment of cells with genetically encoded mechanosensitive proteins, and (iv) modular targeting and control of cell-surface receptors in live cells. The entire procedure takes up to 1 week. This mechanogenetic tool can be generalized to study many outstanding questions related to the dynamics of cell signaling and transcriptional control, including the mechanism of mechanically activated receptor.


Nanoparticles , Optogenetics , Optogenetics/methods , Nanoparticles/chemistry , Signal Transduction , Receptors, Cell Surface/metabolism , Magnetic Phenomena
14.
Microb Pathog ; 190: 106610, 2024 May.
Article En | MEDLINE | ID: mdl-38484920

Jorge Lobo's disease (JLD) and lepromatous leprosy (LL) share several clinical, histological and immunological features, especially a deficiency in the cellular immune response. Macrophages participate in innate and adaptive inflammatory immune responses, as well as in tissue regeneration and repair. Macrophage function deficiency results in maintenance of diseases. M1 macrophages produce pro-inflammatory mediators and M2 produce anti-inflammatory cytokines. To better understand JLD and LL pathogenesis, we studied the immunophenotype profile of macrophage subtypes in 52 JLD skin lesions, in comparison with 16 LL samples, using a panmacrophage (CD68) antibody and selective immunohistochemical markers for M1 (iNOS) and M2 (CD163, CD204) responses, HAM56 (resident/fixed macrophage) and MAC 387 (recently infiltrating macrophage) antibodies. We found no differences between the groups regarding the density of the CD163, CD204, MAC387+ immunostained cells, including iNOS, considered a M1 marker. But HAM56+ cell density was higher in LL samples. By comparing the M2 and M1 immunomarkers in each disease separately, some other differences were found. Our results reinforce a higher M2 response in JLD and LL patients, depicting predominant production of anti-inflammatory cytokines, but also some distinction in degree of macrophage activation. Significant amounts of iNOS + macrophages take part in the immune milieu of both LL and JLD samples, displaying impaired microbicidal activity, like alternatively activated M2 cells.


Antigens, CD , 60579 , Immunophenotyping , Leprosy, Lepromatous , Macrophages , Humans , Macrophages/immunology , Leprosy, Lepromatous/immunology , Leprosy, Lepromatous/pathology , Male , Female , Cytokines/metabolism , Antigens, Differentiation, Myelomonocytic , Lobomycosis/immunology , Lobomycosis/pathology , Middle Aged , Adult , Skin/pathology , Skin/immunology , Aged , Nitric Oxide Synthase Type II/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/immunology
15.
Sci Rep ; 14(1): 4055, 2024 02 19.
Article En | MEDLINE | ID: mdl-38374219

The plasma membrane proteins Rgt2 and Snf3 are glucose sensing receptors (GSRs) that generate an intracellular signal for the induction of gene expression in response to high and low extracellular glucose concentrations, respectively. The GSRs consist of a 12-transmembrane glucose recognition domain and a cytoplasmic C-terminal signaling tail. The GSR tails are dissimilar in length and sequence, but their distinct roles in glucose signal transduction are poorly understood. Here, we show that swapping the tails between Rgt2 and Snf3 does not alter the signaling activity of the GSRs, so long as their tails are phosphorylated in a Yck-dependent manner. Attachment of the GSR tails to Hxt1 converts the transporter into a glucose receptor; however, the tails attached to Hxt1 are not phosphorylated by the Ycks, resulting in only partial signaling. Moreover, in response to non-fermentable carbon substrates, Rgt2 and Hxt1-RT (RT, Rgt2-tail) are efficiently endocytosed, whereas Snf3 and Hxt1-ST (ST, Snf3-tail) are endocytosis-impaired. Thus, the tails are important regulatory domains required for the endocytosis of the Rgt2 and Snf3 glucose sensing receptors triggered by different cellular stimuli. Taken together, these results suggest multiple roles for the tail domains in GSR-mediated glucose sensing and signaling.


Monosaccharide Transport Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Gene Expression Regulation, Fungal , Glucose/metabolism , Monosaccharide Transport Proteins/genetics , Receptors, Cell Surface/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
16.
Am J Physiol Renal Physiol ; 326(4): F611-F621, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38385173

Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the ß-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.


Hypertension , Vacuolar Proton-Translocating ATPases , Male , Humans , Female , Mice , Animals , Angiotensin II/pharmacology , Prorenin Receptor , Kidney/metabolism , Renin-Angiotensin System , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Renin/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
17.
Sci Rep ; 14(1): 3489, 2024 02 12.
Article En | MEDLINE | ID: mdl-38347062

Following localized infection, the entire plant foliage becomes primed for enhanced defense. However, specific genes induced during defense priming (priming-marker genes) and those showing increased expression in defense-primed plants upon rechallenge (priming-readout genes) remain largely unknown. In our Arabidopsis thaliana study, genes AT1G76960 (function unknown), CAX3 (encoding a vacuolar Ca2+/H+ antiporter), and CRK4 (encoding a cysteine-rich receptor-like protein kinase) were strongly expressed during Pseudomonas cannabina pv. alisalensis-induced defense priming, uniquely marking the primed state for enhanced defense. Conversely, PR1 (encoding a pathogenesis-related protein), RLP23 and RLP41 (both encoding receptor-like proteins) were similarly activated in defense-primed plants before and after rechallenge, suggesting they are additional marker genes for defense priming. In contrast, CASPL4D1 (encoding Casparian strip domain-like protein 4D1), FRK1 (encoding flg22-induced receptor-like kinase), and AT3G28510 (encoding a P loop-containing nucleoside triphosphate hydrolases superfamily protein) showed minimal activation in uninfected, defense-primed, or rechallenged plants, but intensified in defense-primed plants after rechallenge. Notably, mutation in only priming-readout gene NHL25 (encoding NDR1/HIN1-like protein 25) impaired both defense priming and systemic acquired resistance, highlighting its previously undiscovered pivotal role in systemic plant immunity.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Pseudomonas/genetics , Pseudomonas/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Immunity/genetics , Pseudomonas syringae/metabolism , Plant Diseases/genetics , Gene Expression Regulation, Plant , Receptors, Cell Surface/metabolism
18.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38338648

The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.


Mannose Receptor , Mannose , Mannose/metabolism , Receptors, Cell Surface/metabolism , Mannose-Binding Lectins/metabolism , Lectins, C-Type/metabolism , Ligands
19.
J Autoimmun ; 143: 103167, 2024 Feb.
Article En | MEDLINE | ID: mdl-38301504

IL-23-activation of IL-17 producing T cells is involved in many rheumatic diseases. Herein, we investigate the role of IL-23 in the activation of myeloid cell subsets that contribute to skin inflammation in mice and man. IL-23 gene transfer in WT, IL-23RGFP reporter mice and subsequent analysis with spectral cytometry show that IL-23 regulates early innate immune events by inducing the expansion of a myeloid MDL1+CD11b+Ly6G+ population that dictates epidermal hyperplasia, acanthosis, and parakeratosis; hallmark pathologic features of psoriasis. Genetic ablation of MDL-1, a major PU.1 transcriptional target during myeloid differentiation exclusively expressed in myeloid cells, completely prevents IL-23-pathology. Moreover, we show that IL-23-induced myeloid subsets are also capable of producing IL-17A and IL-23R+MDL1+ cells are present in the involved skin of psoriasis patients and gene expression correlations between IL-23 and MDL-1 have been validated in multiple patient cohorts. Collectively, our data demonstrate a novel role of IL-23 in MDL-1-myelopoiesis that is responsible for skin inflammation and related pathologies. Our data open a new avenue of investigations regarding the role of IL-23 in the activation of myeloid immunoreceptors and their role in autoimmunity.


Arthritis, Psoriatic , Dermatitis , Psoriasis , Humans , Arthritis, Psoriatic/pathology , Interleukin-17/genetics , Interleukin-17/metabolism , Neutrophils/metabolism , Skin/pathology , Dermatitis/pathology , Inflammation , Interleukin-23/genetics , Interleukin-23/metabolism , Receptors, Cell Surface/metabolism , Lectins, C-Type/genetics
20.
Cell Rep ; 43(3): 113800, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38386559

Infection of mice by mouse cytomegalovirus (MCMV) triggers activation and expansion of Ly49H+ natural killer (NK) cells, which are virus specific and considered to be "adaptive" or "memory" NK cells. Here, we find that signaling lymphocytic activation molecule family receptors (SFRs), a group of hematopoietic cell-restricted receptors, are essential for the expansion of Ly49H+ NK cells after MCMV infection. This activity is largely mediated by CD48, an SFR broadly expressed on NK cells and displaying augmented expression after MCMV infection. It is also dependent on the CD48 counter-receptor, 2B4, expressed on host macrophages. The 2B4-CD48 axis promotes expansion of Ly49H+ NK cells by repressing their phagocytosis by virus-activated macrophages through inhibition of the pro-phagocytic integrin lymphocyte function-associated antigen-1 (LFA-1) on macrophages. These data identify key roles of macrophages and the 2B4-CD48 pathway in controlling the expansion of adaptive NK cells following MCMV infection. Stimulation of the 2B4-CD48 axis may be helpful in enhancing adaptive NK cell responses for therapeutic purposes.


Cytomegalovirus Infections , Receptors, Immunologic , Animals , Mice , Receptors, Immunologic/metabolism , CD48 Antigen/metabolism , Antigens, CD/metabolism , Lymphocyte Activation , Killer Cells, Natural , Receptors, Cell Surface/metabolism , Carrier Proteins/metabolism , Macrophages/metabolism , Phagocytosis
...